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Introduction

" What is temporal video
srounding (TVG) ?

TVG 1s to predict the

starting/ending time points of

moments described by a text
sentence within a long
untrimmed video.

= Motivation
High complexity
of 3D CNNs makes extracting
dense 3D visual features time-
consuming, which calls
for intensive memory and
computing resources.

* Challenges

How to advance 2D TVG
methods so as to achieve
comparable results to 3D TVG
methods?
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Loss Function Design
L= LtIoU -+ ﬁlcdis + 62£dur

Temporal IoU Loss L¢;,: maximize overlapping between the predicted
time 1nterval and its ground truth.

Distance Loss L ;. : minimize the normalized central time point distance.
Duration Loss L 4,,,- : minimize the duration differences.

[2] Chen. et al. Semantic proposal for activity localization in videos via sentence query. (2019).
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Text-Visual Prompting (TVP) Framework for TVG

Cross-modal Fusion
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= Metric
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The percentage accuracy of predicted moments

whose tloU (temporal IoU) with the ground-
truth moment 1s larger than threshold m.
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Accuracy with Temporal IoU threshold m
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[3] Gao. et al. Tall: Temporal activity localization via language query (2017).

Type Method Feature | m=0.3 m=0.5 m=0.7
CTRL [“] C3D 23.63 8.89
ABLR [17] C3D - 24.36 9.01
BPNet [ 1] C3D 55.46 38.25 20.51
LPNet [“] C3D 59.14 40.94 21.13
QSPN [11] C3D 54.70 35.60 15.80
TSP-PRL [¢] C3D - 45.45 24.75
3D TVG TripNet [5] C3D 54.64 38.29 16.07
DRN [17] C3D - 45.40 26.40
CPNet [0] C3D - 40.32 22.47
DEBUG [7/] C3D 54.95 37.39 17.92
ExCL [4] I3D 61.50 44.1 22.40
VSLNet [ 5] 13D 64.30 47.31 30.19
MAN [14] I3D - 46.53 22.72
MCN [1] VGG 17.46 8.01
2DTVG SAP [7] VGG 27.42 13.36
Ours
Base 61.29 40.43 19.89
TVP-Based | + Visual Prompts ResNet 65.38 4431 20.22
2D TVG + Text Prompts 65.81 43.44 20.65
+ Both Prompts 65.92 44.39 21.51
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Visual Accuracy with Temporal IoU threshold m
Type Method Feature | m=0.3 m=0.5 m=0.7
CTRL [“] C3D 28.70 14.00 -
BPNet [10] C3D 59.98 42.07 24.69
LPNet [Y] C3D 64.29 45.92 25.39
QSPN [11] C3D 45.30 27.70 13.60
TSP-PRL [¢] C3D 56.02 38.83 -
TripNet [5] C3D 48.42 32.19 13.93
SDTVG DRN [17] C3D - 45.45 24.36
CPNet [0] C3D - 40.56 21.63
ABLR [17] C3D 55.67 36.79 -
DEBUG [ 7] C3D 55.91 39.72 -
ExCL [4] C3D 63.00 43.60 24.10
VSLNet [ 5] C3D 63.16 43.22 26.16
Ours
Base 57.20 40.16 19.14
TVP-Based | + Visual Prompts ResNet 60.12 43.39 23.71
2D TVG + Text Prompts 60.48 42.58 24.39
+ Both Prompts 60.71 43.44 25.03

[4] Ghosh. et al. Excl: Extractive clip localization using natural language



