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To Generate or Not? Safety-Driven Unlearned Diffusion Models

Are Still Easy to Generate Unsafe Images ... For Now
Yimeng Zhang'4~, Jinghan Jial”", Xin Chen?, Aochuan Chen?, Yihua Zhang?!, Jiancheng Liut, Ding Ke?, Sijia Liu?

» Adversary against Unlearned DMs:

* For diffusion models (DMs), safety-driven unlearning methods [1-S!
face doubts about their effectiveness.

¢ To assess the trustworthiness of these models, a ‘discrete’
adversarial text prompt attack, UnlearnDiffAtkm, Is proposed.

» Key Insights

*» As shown In Figure 1. (a) — (c) and Figure 2., our proposed adversarial
prompt attack (UnlearnDiffAtk) utilize DMs' classification abilities [4]
to generate attacks based on single target image without needing

-> Faster and less memory usage.

auxiliary models.

* As shown In Figure 3., the choice of target image x;,, Is flexible and

It can be a randomly-chosen internet image, relevant to the concept
targeted for erasure.

*» The optimized adversarial prompts consist of 5 discrete text tokens as

shown in Figure 1. (d).
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Figure 1. Comparison of attack methodologies on DMs and UnlearnDiffAtk Demonstrations.
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Table 1. Performance of various attack methods against unlearned
DMs in NSWF concept unlearning, measured by attack success
rate (ASR) and computation time in minutes (mins).

Finally, exclude the terms that are unrelated to ¢’ and we

can get Equation (1).
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Figure 4. Generated
concept unlearning.
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Images using ESD under different attacks for

attacks for object unlearning.

Figure 5. Generated images using ESD under different
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